73 research outputs found

    Groeien of handhaven?

    Get PDF
    De effecten van taakgerichte (ā€œtask-referencedā€ of ā€œself-referencedā€) streef- en vermijddoelen op prestatie en taakinteresse werden onderzocht in de context van een assessment center (AC). De steekproef (N = 171) bestaat uit kandidaten voor een individueel assessment programma. De resultaten bevestigen het verwachte positieve effect van streefdoelen op taakinteresse dat volledig werd gemedieerd door inzetintentie. Ook de verwachte negatieve effecten van vermijddoelen op taakinteresse en waargenomen competentie, gemedieerd door cognitieve testangst, werden bevestigd. Tegen de verwachting in werden er geen verbanden aangetroffen tussen prestatiedoelen en de daadwerkelijke prestatie (zoals beoordeeld door een professionele assessor). De resultaten dragen bij aan nieuwe kennis omtrent de recent geĆÆntroduceerde taakgerichte vermijddoelen, repliceren eerder gevonden effecten van streefdoelen in een nieuwe werkgerelateerde onderzoekssetting, en onderstrepen het belang van het onderscheid tussen taakgerichte streef- en vermijddoelen

    Profiling the proteoforms of urinary prostate-specific antigen by capillary electrophoresis-mass spectrometry

    Get PDF
    Early detection of prostate cancer may lead to the overdiagnosis and overtreatment of patients as well as missing significant cancers. The current diagnostic approach uses elevated serum concentrations of prostate-specific antigen (PSA) as an indicator of risk. However, this test has been widely criticized as it shows poor specificity and sensitivity. In order to improve early detection and diagnosis, several studies have investigated whether different PSA proteoforms are correlated to prostate cancer. Until now, studies and methodologies for the comprehensive characterization of PSA proteoforms from biofluids are scarce. For this purpose, we developed an intact protein assay to analyze PSA by capillary electrophoresis-electrospray ionization-mass spectrometry after affinity purification from patients? urine. Here, we determined six proteolytic cleavage variants. In regard to glycosylation, tri-, di-, mono- and non-sialylated complex-type N-glycans were found on non-cleaved PSA, as well as the non-glycosylated variant. The performance of the intact protein assay was assessed using a pooled sample, obtaining an inter-day variability of 15%. Furthermore, urinary patient samples were analyzed by intact protein analysis and a bottom-up approach (glycopeptide analysis). This combined approach revealed complimentary information on both levels, demonstrating the benefit of using two orthogonal techniques to provide a thorough profile of urinary PSA.Significance: The detection of clinically relevant prostate cancer requires a more specific and sensitive biomarker and, in this case, several PSA proteoforms may be able to aid or improve the current PSA test. However, a comprehensive analysis of the intact PSA proteoform profile is still lacking. This study investigated the PSA proteoforms present in urine and, in particular, determined the relative contribution of cleaved PSA and noncleaved PSA forms to the total glycosylation profile. Importantly, intact protein analysis did not require further sample treatment before being measured by CE-ESI-MS. Furthermore, its glycosylation was also assessed in a bottom-up approach to provide complementary information. Overall, these results represent an important basis for future characterization and biomarker studies.Proteomic

    Life cycle informed restoration:Engineering settlement substrate material characteristics and structural complexity for reef formation

    Get PDF
    Ecosystems are degrading world-wide, with severe ecological and economic consequences. Restoration is becoming an important tool to regain ecosystem services and preserve biodiversity. However, in harsh ecosystems dominated by habitat-modifying organisms, restoration is often expensive and failure prone. Establishment of such habitat modifiers often hinges on self-facilitation feedbacks generated by traits that emerge when individuals aggregate, causing density- or patch size-dependent establishment thresholds. To overcome these thresholds, adult or juvenile habitat-forming species are often transplanted in clumped designs, or stress-mitigating structures are deployed. However, current restoration approaches focus on introducing or facilitating a single life stage, while many habitat modifiers experience multiple bottlenecks throughout their life as they transition through sequential life stages. Here, we define and experimentally test ā€˜life cycle informed restorationā€™, a restoration concept that focuses on overcoming multiple bottlenecks throughout the target speciesā€™ lifetime. To provide proof of concept, and show its general applicability, we carried out complementary experiments in intertidal soft-sediment systems in Florida and the Netherlands where oysters and mussels act as reef-building habitat modifiers. We used biodegradable structures designed to facilitate bivalve reef recovery by both stimulating settlement with hard and fibrous substrates and post-settlement survival by reducing predation. Our trans-Atlantic experiments demonstrate that these structures enabled bivalve reef formation by: (a) facilitating larval recruitment via species-specific settlement substrates, and (b) enhancing post-settlement survival by lowering predation. In the Netherlands, structures with coir rope most strongly facilitated mussels by providing fibrous settlement substrate, and predation-lowering spatially complex hard attachment substrate. In Florida, oysters were greatly facilitated by hard substrates, while coir rope proved unbeneficial. Synthesis and applications. Our findings demonstrate that artificial biodegradable reefs can enhance bivalve reef restoration across the Atlantic by mimicking emergent traits that ameliorate multiple bottlenecks over the reef-forming organismā€™ life cycle. This highlights the potential of our approach as a cost-effective and practical tool for nature managers to restore systems dominated by habitat modifiers whose natural recovery is hampered by multiple life stage-dependent bottlenecks. Therefore, investment in understanding how to achieve life cycle informed restoration on larger scales and whether the method it is applicable to restore other ecosystems is now required

    High-throughput glycopeptide profiling of prostate-specific antigen from seminal plasma by MALDI-MS

    Get PDF
    An altered total seminal plasma glycosylation has been associated with male infertility, and the highly abundant seminal plasma glycoprotein prostate-specific antigen (PSA) plays an important role in fertilization. However, the exact role of PSA glycosylation in male fertility is not clear. To understand the involvement of PSA glycosylation in the fertilization process, analytical methods are required to study the glycosylation of PSA from seminal plasma with a high glycoform resolution and in a protein-specific manner. In this study, we developed a novel, high-throughput PSA glycopeptide workflow, based on matrix-assisted laser desorption/ionization-mass spectrometry, allowing the discrimination of sialic acid linkage isomers via the derivatization of glycopeptides. The method was successfully applied on a cohort consisting of seminal plasma from infertile and fertile men (N = 102). Forty-four glycopeptides were quantified in all samples, showing mainly complex-type glycans with high levels of fucosylation and sialylation. In addition, N,N-diacetyllactosamine (LacdiNAc) motives were found as well as hybrid-type and high mannose-type structures. Our method showed a high intra- and interday repeatability and revealed no difference in PSA glycosylation between fertile and infertile men. Next to seminal plasma, the method is also expected to be of use for studying PSA glycopeptides derived from other biofluids and/or in other disease contexts.Proteomic

    Fc galactosylation promotes hexamerization of human IgG1, leading to enhanced classical complement activation

    Get PDF
    Human IgG contains one evolutionarily conserved N-linked glycan in its Fc region at position 297. This glycan is crucial for Fc-mediated functions, including its induction of the classical complement cascade. This is induced after target recognition through the IgG-Fab regions, allowing neighboring IgG-Fc tails to associate through Fc:Fc interaction, ultimately leading to hexamer formation. This hexamerization seems crucial for IgG to enable efficient interaction with the globular heads of the first complement component C1q and subsequent complement activation. In this study, we show that galactose incorporated in the IgG1-Fc enhances C1q binding, C4, C3 deposition, and complement-dependent cellular cytotoxicity in human erythrocytes and Raji cells. IgG1-Fc sialylation slightly enhanced binding of C1q, but had little effect on downstream complement activation. Using various mutations that decrease or increase hexamerization capacity of IgG1, we show that IgG1-Fc galactosylation has no intrinsic effect on C1q binding to IgG1, but enhances IgG1 hexamerization potential and, thereby, complement activation. These data suggest that the therapeutic potential of Abs can be amplified without introducing immunogenic mutations, by relatively simple glycoengineering.Proteomic

    A Matrix-Assisted Laser Desorption/Ionizationā€”Mass Spectrometry Assay for the Relative Quantitation of Antennary Fucosylated N-Glycans in Human Plasma

    Get PDF
    Changes in the abundance of antennary fucosylated glycans in human total plasma N-glycome (TPNG) have been associated with several diseases ranging from diabetes to various forms of cancer. However, it is challenging to address this important part of the human glycome. Most commonly, time-consuming chromatographic separations are performed to differentially quantify core and antenna fucosylation. Obtaining sufficient resolution for larger, more complex glycans can be challenging. We introduce a matrix-assisted laser desorption/ionizationā€”mass spectrometry (MALDI-MS) assay for the relative quantitation of antennary fucosylation in TPNG. N-linked glycans are released from plasma by PNGase F and further treated with a core fucosidase before performing a linkage-informative sialic acid derivatization. The core fucosylated glycans are thus depleted while the remaining antennary fucosylated glycans are quantitated. Simultaneous quantitation of Ī±2,3-linked sialic acids and antennary fucosylation allows an estimation of the sialyl-Lewis x motif. The approach is feasible using either ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry or time-of-flight mass spectrometry. The assay was used to investigate changes of antennary fucosylation as clinically relevant marker in 14 colorectal cancer patients. In accordance with a previous report, we found elevated levels of antennary fucosylation pre-surgery which decreased after tumor resection. The assay has the potential for revealing antennary fucosylation signatures in various conditions including diabetes and different types of cancer.Surgical oncolog

    Large-scale analysis of apolipoprotein CIII glycosylation by ultrahigh resolution mass spectrometry

    Get PDF
    Apolipoprotein-CIII (apo-CIII) is a glycoprotein involved in lipid metabolism and its levels are associated with cardiovascular disease risk. Apo-CIII sialylation is associated with improved plasma triglyceride levels and its glycosylation may have an effect on the clearance of triglyceride-rich lipoproteins by directing these particles to different metabolic pathways. Large-scale sample cohort studies are required to fully elucidate the role of apo-CIII glycosylation in lipid metabolism and associated cardiovascular disease. In this study, we revisited a high-throughput workflow for the analysis of intact apo-CIII by ultrahigh-resolution MALDI FT-ICR MS. The workflow includes a chemical oxidation step to reduce methionine oxidation heterogeneity and spectrum complexity. Sinapinic acid matrix was used to minimize the loss of sialic acids upon MALDI. MassyTools software was used to standardize and automate MS data processing and quality control. This method was applied on 771 plasma samples from individuals without diabetes allowing for an evaluation of the expression levels of apo-CIII glycoforms against a panel of lipid biomarkers demonstrating the validity of the method. Our study supports the hypothesis that triglyceride clearance may be regulated, or at least strongly influenced by apo-CIII sialylation. Interestingly, the association of apo-CIII glycoforms with triglyceride levels was found to be largely independent of body mass index. Due to its precision and throughput, the new workflow will allow studying the role of apo-CIII in the regulation of lipid metabolism in various disease settings.Proteomic

    Afucosylated Plasmodium falciparum-specific IgG is induced by infection but not by subunit vaccination

    Get PDF
    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family members mediate receptor- and tissue-specific sequestration of infected erythrocytes (IEs) in malaria. Antibody responses are a central component of naturally acquired malaria immunity. PfEMP1-specific IgG likely protects by inhibiting IE sequestration and through IgG-Fc Receptor (FcĪ³R) mediated phagocytosis and killing of antibody-opsonized IEs. The affinity of afucosylated IgG to FcĪ³RIIIa is up to 40-fold higher than fucosylated IgG, resulting in enhanced antibody-dependent cellular cytotoxicity. Most IgG in plasma is fully fucosylated, but afucosylated IgG is elicited in response to enveloped viruses and to paternal alloantigens during pregnancy. Here we show that naturally acquired PfEMP1-specific IgG is strongly afucosylated in a stable and exposure-dependent manner, and efficiently induces FcĪ³RIIIa-dependent natural killer (NK) cell degranulation. In contrast, immunization with a subunit PfEMP1 (VAR2CSA) vaccine results in fully fucosylated specific IgG. These results have implications for understanding protective natural- and vaccine-induced immunity to malaria

    Immunoglobulin G1 Fc glycosylation as an early hallmark of severe COVID-19.

    Get PDF
    Background: Immunoglobulin G1 (IgG1) effector functions are impacted by the structure of fragment crystallizable (Fc) tail-linked N-glycans. Low fucosylation levels on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein-specific IgG1 has been described as a hallmark of severe coronavirus disease 2019 (COVID-19) and may lead to activation of macrophages via immune complexes thereby promoting inflammatory responses, altogether suggesting involvement of IgG1 Fc glycosylation modulated immune mechanisms in COVID-19. Methods: In this prospective, observational single center cohort study, IgG1 Fc glycosylation was analyzed by liquid chromatography-mass spectrometry following affinity capturing from serial plasma samples of 159 SARS-CoV-2 infected hospitalized patients. Findings: At baseline close to disease onset, anti-S IgG1 glycosylation was highly skewed when compared to total plasma IgG1. A rapid, general reduction in glycosylation skewing was observed during the disease course. Low anti-S IgG1 galactosylation and sialylation as well as high bisection were early hallmarks of disease severity, whilst high galactosylation and sialylation and low bisection were found in patients with low disease severity. In line with these observations, anti-S IgG1 glycosylation correlated with various inflammatory markers. Interpretation: Association of low galactosylation, sialylation as well as high bisection with disease severity and inflammatory markers suggests that further studies are needed to understand how anti-S IgG1 glycosylation may contribute to disease mechanism and to evaluate its biomarker potential. Funding: This project received funding from the European Commission's Horizon2020 research and innovation program for H2020-MSCA-ITN IMforFUTURE, under grant agreement number 721815, and supported by Crowdfunding Wake Up To Corona, organized by the Leiden University Fund
    • ā€¦
    corecore